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near-wall Reynolds shear stress

Koji Fukagata *, Nobuhide Kasagi

Department of Mechanical Engineering, The University of Tokyo, Hong 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan
Abstract

We propose a new suboptimal control law for drag reduction in wall-turbulence, which requires the streamwise wall-shear signal

only. The cost function is designed to reduce the near-wall Reynolds shear stress that is directly related to the turbulent skin friction

drag. The suboptimal solution to minimize the cost function is analytically derived by using the procedure proposed by Lee et al.

[J. Fluid Mech. 358 (1998) 245]. Direct numerical simulation of turbulent pipe flow shows that the friction drag can be successfully

reduced by the derived control law. Moreover, the sign of Reynolds shear stress in the near-wall layer is found to be reversed with

the present control.
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1. Introduction

For successful development of an active feedback

control system for drag reduction in wall-bounded tur-

bulent flow, the effectiveness of the control scheme used
as well as the performance of the hardware components

such as sensors and actuators is of great importance.

Control schemes may be classified into two types, i.e.,

explicit and implicit schemes. The explicit scheme is one

in which the control input of the actuator i, /i, is

explicitly given by a function of sensor signals. On the

other hand, the implicit scheme, such as the optimal

control (e.g., Bewley et al., 2001) only describes a rela-
tion to be satisfied (i.e., a cost function to be minimized)

and requires iterative procedures to determine the con-

trol input. While such implicit schemes are useful to

explore the possibility of drag reduction control, the

explicit schemes are suitable for implementation in

the real applications, where real-time computation of

the actuation signal is required.

In the last decade, various explicit control laws were
developed and assessed by using direct numerical sim-

ulation (DNS) of controlled turbulent flow. Choi et al.
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(1994) proposed the so-called opposition control, in

which blowing/suction velocity is given at the wall so as

to oppose the velocity components at a virtual detection

plane located above the wall. They attained about 25%

drag reduction by this extremely simple control law in
their DNS of turbulent channel flow at low Reynolds

numbers. Subsequently, several attempts were made to

develop control laws using the information measurable

at the wall. Lee et al. (1997) used a neural network and

found a control law in which the control input is given

as a weighted sum of the spanwise wall-shear stresses,

ðow=oyÞw, measured around the actuator. Series of

analytical solutions of the control input to minimize the
cost function was derived by Lee et al. (1998) in the

framework of the suboptimal control. Their DNS of

channel flow at Res ’ 110 showed 16–22% drag reduc-

tion when ðow=oyÞw (in this case, the control law is quite

similar to that obtained by using the neural network

mentioned above) or the wall pressure, pw, was used as

the sensor signal.

From a practical point of view, it is desirable to use
the streamwise wall-shear stress, ðou=oyÞw, or pw (or

both) as a sensor signal because a streamwise wall-shear

stress sensor (Yoshino et al., 2003) and a wall pressure

sensor (L€ofdahl et al., 1996) of sufficiently small size and

high frequency response are becoming available. For the

use of pw, in addition to the work by Lee et al. (1998),
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Fig. 1. Coordinate system: (a) channel; and (b) pipe.
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Koumoutsakos (1999) presented a scheme to control the

vorticity flux, and succeeded to reduce the friction drag

in his DNS.

For the use of ðou=oyÞw, however, development of an
effective control law seems more difficult. Lee et al.

(1998), who developed the above-mentioned ðow=oyÞw-
and pw-based schemes, also presented a suboptimal

solution based on ðou=oyÞw. The cost functional was

given by

Jð/Þ ¼ ‘

2ADt

Z
S

Z tþDt

t
/2 dtdS

þ 1

2ADt

Z
S

Z tþDt

t

ou
oy

����
w

� �a

dtdS: ð1Þ

Here, / denotes the control input, i.e., the blowing/

suction velocity at the wall, A is the area of wall, Dt is the
time-span for optimization, and ‘ is the price of control.
The power to the wall shear, a, was chosen as 1 or 2. The

use of a ¼ 1 led to a trivial solution, i.e., / ¼ 0. With

a ¼ 2, the derived control law was expressed in the

Fourier space as

/̂ ¼ � ikx
k

cou
oy

�����
w

; ð2Þ

where the hat denotes the Fourier component, kx is the
streamwise wavenumber, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
is the two-

dimensional absolute wavenumber in the streamwise–

spanwise plane, and i ¼
ffiffiffiffiffiffiffi
�1

p
. Unfortunately, however,

the friction drag was not reduced.

When the dynamics of the system is described by
linearized equations, as is in this case, modification of

any state variable Du due to the control input / can

symbolically be expressed as

Dûmn ¼ fmnð/̂mnÞ; ð3Þ
where m and n are the mode numbers and f denotes a

mapping function. This indicates, a matter of course,

that the interaction occurs only within the same wave-
number. Based on this fact, the following analysis can be

made on the cost functional of Eq. (1).

(1) For a ¼ 1, the second term of the cost function con-
sists of ðm; nÞ ¼ ð0; 0Þ mode only. Modification of

this term is not possible under the zero net-flux con-

straint usually imposed, i.e., /̂00 ¼ 0.

(2) For a ¼ 2, the cost function is decomposed as

Jð/Þ ¼ ‘
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; ð4Þ

where U denotes the mean velocity. Modification of

the third term (i.e., the mean wall-shear) is not pos-

sible due to the same reason as that for the case of
a ¼ 1. The second term, i.e., the fluctuation compo-

nent, is manipulable.

As analyzed above, the non-trivial solution for the

streamwise shear-based suboptimal control, i.e., Eq. (2),

actually targets at suppression of the fluctuating com-

ponent of the streamwise wall-shear, but not the mean

component. Although reduction of the friction drag may
be attainable by choosing such a target, as is demon-

strated by Lee et al. (2001) who uses a two-dimensional

linear-quadratic-Gaussian (LQG)/loop-transfer recov-

ery (LTR) controller, the resulting drag reduction effect

is merely a byproduct (Lee et al., 2001).

In the present study, we choose a manipulable (i.e.,

fluctuating) quantity which is more directly related to

the skin friction drag, i.e., the near-wall Reynolds shear
stress, as the target of suppression. By using intuitive

and suboptimal approaches, we attempt to develop a

simple algebraic control law which requires ðou=oyÞw
only as the sensor information.
2. Control strategy

An incompressible flow is considered throughout the

present study. Under the condition of constant flow

rate, the skin friction coefficient in fully developed

channel and pipe flows, defined by Cf ¼
s�w=½ð1=2Þq�U �2

b �, can be decomposed as

Cf ¼
12

Reb
þ 12

Z 1

0

2ð1� yÞð�u0v0Þdy ð5Þ

and

Cf ¼
16

Reb
þ 16

Z 1

0

2ru0ru
0
zrdr; ð6Þ

respectively (Fukagata et al., 2002). The coordinate

system is shown in Fig. 1. Here, all variables without

superscript are those non-dimensionalized by the chan-
nel half-width, d�, or the pipe radius, R�, and twice the

bulk mean velocity, 2U �
b , whereas dimensional variables
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are denoted by the superscript �. The bulk Reynolds

number is defined as

Reb ¼
2U �

bd
�

m�
or Reb ¼

2U �
bR

�

m�
: ð7Þ

The overbar (�) and prime (�0) denote the mean and

fluctuation components of the Reynolds decomposition.

Eqs. (5) and (6) indicate that the skin friction coefficient
is decomposed into two parts. One is the laminar con-

tribution given by the well-known laminar solution, and

the other is the turbulent contribution, which is pro-

portional to the weighted integral of Reynolds shear

stress.

Fig. 2 shows the weighted Reynolds stress appearing

in Eq. (6) (i.e., 2r2u0ru
0
z), in a pipe flow controlled by the

opposition control law with different detection plane
heights, yþu

d . The difference in the areas covered by the

controlled and uncontrolled flow curves is directly pro-

portional to the drag reduction by control. The maxi-

mum drag reduction rate is obtained with yþu
d ¼ 15. It is

clear that most of the drag reduction is attributed to the

suppression of Reynolds stress in the near-wall layer. As

reported in the study of opposition control (Choi et al.,

1994; Hammond et al., 1998; Fukagata and Kasagi,
2003), the drag reduction rate decreases when too high

detection plane is used. The case of yþu
d ¼ 23 shown in

Fig. 2 corresponds the case in which the drag recover to

that of the uncontrolled flow. The Reynolds stress at the

half-height of the detection plane (yþu ¼ 12), around

where a formation of virtual wall (Hammond et al.,

1998) is expected, is still much lower than that of the

uncontrolled flow. The recovery of drag resulted by the
use of higher detection plane is rather due to the drastic

increase of the Reynolds stress very near the wall.

Another observation in Fig. 2 is that the Reynolds

stress far from the wall is also suppressed, although the

amount of suppression is relatively small. This can be

explained as an indirect effect due to a propagation of

the change of Reynolds stress in the near-wall layer. In
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Fig. 2. Weighted Reynolds stress distribution of the opposition-con-

trolled flow with different detection plane heights yd.
our recent study (Fukagata and Kasagi, 2003), where

the opposition control is applied partially to wall, the

Reynolds stress profile near the wall drastically changes

due to the direct suppression at the beginning of con-
trolled region and the distribution far from the wall

changes gradually following the quick change in the

near-wall region. Although the control input in that

example is switched on in space, a similar phenomenon

is expected when the control is turn on at a certain time

to a fully developed uncontrolled flow.

The information above suggests that suppression of

the near-wall Reynolds shear stress is of primary
importance in order to reduce the skin friction drag.

Once the near-wall Reynolds shear stress is suppressed,

its propagation toward the outer layer is also expected

to result in an additional amount of drag reduction.

Note that the importance of Reynolds shear stress for

drag reduction is pointed out also by Bewley and Aamo

(2004), who independently derive an integral relation

essentially similar to Eq. (5).
3. Intuitive control

As is well known, the positive Reynolds shear stress

(i.e., �u0v0 > 0) near the wall is a consequence of the

dominance of the sweep/ejection motions, as is sche-

matically drawn in Fig. 3a. Therefore, an intuitive
control strategy in order to attenuate the Reynolds

stress in the vicinity of the wall is to give the blowing/

suction velocity at the wall proportional to the local

wall-shear fluctuation, so that blowing is applied to the

high-speed region and suction to the low-speed region

(see, Fig. 3b). Thus, with the intuitive control law, the

control input (/ðx; z; tÞ ¼ vðx; 0; z; tÞ for a channel and

/ðh; z; tÞ ¼ urð1; h; z; tÞ for a pipe) can be expressed as

/ ¼ a
ou0

oy

����
w

or / ¼ a
ou0z
or

����
w

ð8Þ

for a channel or a pipe, respectively. Here, a is the

amplitude coefficient that, if dimensional, has a dimen-

sion of length.
Fig. 3. Schematic of the intuitive control scheme.
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4. Suboptimal control

4.1. Cost functional

In the intuitive control introduced above, the actua-

tion signal is determined using only the sensor signal at

the identical location. Namely, the modification of flow

due to the control input by the neighboring actuators is

not accounted for. Such effects are properly taken into

account by the suboptimal control procedure described

below.

First, we propose a cost functionalJ to be minimized
as

Jcð/Þ ¼
‘

2ADt

Z
S

Z tþDt

t
/2 dtdS

þ 1

2ADt

Z
S

Z tþDt

t
ð�u0v0Þy¼Y dtdS ð9Þ

for a channel flow and

Jpð/Þ ¼
‘

ADt

Z
S

Z tþDt

t
/2 dtdS

þ 1

ADt

Z
S

Z tþDt

t
ðu0ru0zÞr¼ðR�Y Þ dtdS ð10Þ

for a pipe flow, respectively. Here, / denotes the control

input, i.e., the blowing/suction velocity at the wall, A is
the area of wall, Dt is the time-span for optimization,

and ‘ is the price for the control.

The proposition is to minimize this cost functional

under the linearized Navier–Stokes equation. Since a

very short time, Dt, is considered here, the linearization

is done, similarly to Lee et al. (1998), by temporally

discretizing the Navier–Stokes equation so that the

advection term does not affect the determination of
control input. Namely, by using an explicit scheme for

the nonlinear terms and Crank–Nicolson scheme for the

linear terms for temporal discritization, the short time

dynamics of the system is approximated by the follow-

ing set of equations:

r � unþ1 ¼ 0; ð11Þ

unþ1 ¼ Dt
�
�rpnþ1 þ 2

Reb
r2unþ1

�
þ Fn; ð12Þ

where the superscripts of n and nþ 1 denote the discrete

time instances, and F is the part explicitly integrated,
i.e.,

Fn ¼ un þ Dt
�
�r � ðununÞ þ 2

Reb
r2un

�
: ð13Þ

The velocity boundary condition on the wall is

ujnþ1
w ¼ /nw; ð14Þ

where nw is the wall-normal unit vector.
4.2. Control law for channel flow

As mentioned in Section 1, our purpose is to develop

a control law which uses the streamwise wall-shear as
the sensor information. Therefore, the Reynolds shear

stress above the wall (y ¼ Y ) appearing in the cost

function needs to be evaluated by using the information

on the wall. The Taylor-series expansions of the

streamwise and wall-normal velocities read

u0ðY Þ ¼ Y
ou0

oy

����
w

þ Y 2

2

o2u0

oy2

����
w

þ OðY 3Þ ð15Þ

and

v0ðY Þ ¼ /þ Y 2

2

o2v0

oy2

����
w

þ OðY 3Þ; ð16Þ

respectively. The leading term for v0ðY Þ in the absence of

the control input is on the second order. With control,

however, the zeroth-order term appears. By taking the

leading order term of the Taylor-series expansion, the

Reynolds stress at y ¼ Y under control is approximated

as

�u0v0ðY Þ ’ �Y/
ou0

oy

����
w

: ð17Þ

Substitution of Eq. (17) into Eq. (9) yields an approxi-

mated cost functional, i.e.,

Jcð/Þ ¼
‘

2ADt

Z
S

Z tþDt

t
/2 dtdS

� Y
2ADt

Z
S

Z tþDt

t
/
ou0

oy

����
w

dtdS: ð18Þ

The control input, /, that minimize the cost func-

tional, Eq. (18), can be calculated analytically through

the procedure proposed by Lee et al. (1998) as follows.

First, the Fr�echet differentiation is applied to the cost

functional, i.e.,

DJc

D/
~/ ¼ ‘

ADt

Z
S

Z tþDt

t
/~/dtdS

� Y
2ADt

Z
S

Z tþDt

t

ou
oy

����
w

~/

�
þ /

oq
oy

����
w

�
dtdS:

ð19Þ

Here, the Fr�echet differential is defined by

Df ð/Þ
D/

~/ ¼ lim
e!0

f ð/þ e~/Þ � f ð/Þ
e

ð20Þ

and q is the differential state of the streamwise velocity,

i.e.,

q ¼ Du
D/

~/: ð21Þ

Next, we consider a two-dimensional Fourier trans-
form defined by
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f ¼
X
m

X
n

f̂ expðikxxþ ikzzÞ; ð22Þ

where f represents any variable and the hat denotes its

Fourier coefficient. The streamwise and spanwise

wavenumbers are defined by kx ¼ 2pm=Lx and

kz ¼ 2pn=Lz, respectively, i ¼
ffiffiffiffiffiffiffi
�1

p
. This two-dimen-

sional discrete Fourier transform is applied to the

approximated cost functional, Eq. (18), to yielddDJc

D/
b~/H ¼ ‘/̂b~/H � Y

2

cou
oy

�����
w

b~/H

 
þ /̂

coq
oy

H
�����
w

!
; ð23Þ

where the superscript H denotes a complex conjugate

and the indices for mode numbers (mn) are omitted for

notational simplicity. The modification of the stream-
wise velocity due to the perturbation field, q̂, that ap-

pears in Eq. (23) can be determined by solving the

Fr�echet differential of the state equation (i.e., the line-

arized Navier–Stokes equation). Since here we consider

the same state equation and boundary condition as

those used by Lee et al. (1998), i.e., Eqs. (11)–(14), we

simply borrow their solution of q̂ that reads

q̂ðyÞ ¼ ikx
k

~/ expð
h

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ c2

p
yÞ � expð � kyÞ

i
; ð24Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
and the parameter c is defined by

c ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Reb
Dt

r
: ð25Þ

From this solution, the complex conjugate of the wall-

shear modification due to the perturbation field can be

calculated ascoq
oy

H
�����
w

’ c
ikx
k
b~/H

; ð26Þ

where the same assumption as that used by Lee et al.

(1998), i.e., k2 � c2 is used.
Finally, by substituting, Eq. (26) into Eq. (23), we can

find the suboptimal control input that makes

ðDJc=D/Þ~/ ¼ 0 for any ~/, which can be expressed as

/̂ ¼ a
cou
oy

�����
w

"
þ c

ikx
k
/̂

#
ð27Þ

or, by isolating /̂,

/̂ ¼ a
1� iackx=k

cou
oy

�����
w

: ð28Þ

Here, the amplitude coefficient a (cf. Eq. (8)) is related to

the predefined parameters, ‘ and Y , by

a ¼ Y
2‘

: ð29Þ

The first expression, Eq. (27), suggests that this subop-

timal control law is essentially similar to the intuitive

control, but with the correction term for the modifica-
tion of the flow field due to the control itself. It is worth

mentioning that 1=c can be interpreted as the influential

thickness in time Dt (both non-dimensionalized by d�

and 2U �
b ) analogous to that in the Rayleigh’s problem.

Therefore the product ac appearing in the second

expression, Eq. (28) can be interpreted a ratio of control

amplitude to its influential thickness. (In dimensional

space, too, a� ¼ Y �=‘ and c� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðm�Dt�Þ

p
makes the

product a�c� a dimensionless number.) The difference

from the intuitive control becomes larger when the

control is strong, i.e., large a, or when the momentum

introduced by control during Dt is diffused within a thin
layer, i.e., large c.

In the first step of the present derivation, the Rey-

nolds shear stress above the wall is approximated by

using only the leading order term, see, Eq. (17). One

may be tempted to include also higher order terms for a

better approximation. In that case, however, the control

law derived in a similar manner requires other infor-

mation such as pw and ðow=oyÞw, too.
4.3. Weights in the physical space

The derived control algorithms can be transformed to

the physical space through the inverse discrete Fourier

transform, i.e.,

/̂ ¼ bW H
cou
oy

�����
w

) /k‘ ¼
X
i

X
j

Wij
ou
oy

����
w;kþi;‘þj

; ð30Þ

where bW H is the function preceding dðou=oyÞw in Eq.

(28). The subscripts to the variable in the physical space,

i, j, k and ‘, denote the discrete positions of a sensor or

an actuator, e.g., Wij ¼ W ðiDx; jDzÞ. Eq. (30) indicates
that the control input of an actuator is given by a

weighted sum of the streamwise wall-shear around it.
Fig. 4 shows the distribution of the weight, Wij, nor-

malized by W00 in the case of ac ¼ 73. The weight dis-

tribution has different characteristics in the streamwise
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and spanwise directions. It is symmetric in the spanwise

direction and whereas asymmetric in the streamwise

direction.

One-dimensional weight distributions on the ortho-

gonal axes, i.e., j ¼ 0 and i ¼ 0, are depicted in Fig. 5 for
different values of ac. The streamwise distributions are

similar to curves of exponential decrease. The maximum

weight appears at the position right downstream of the

actuator and its value is dependent on ac. The number

of downstream sensors that should be accounted for is

determined by the parameter, ac. On the other hand, the

spanwise distribution is nearly independent of the

parameter ac and it is similar to a negative second
derivative.

Note, if the weighting function in the Fourier space

were

bW H ¼ a
1� iackx

ð31Þ

(i.e., omitting the division by k), then the normalized

weight in the physical space would be

W ðxÞ
W ð0Þ ¼

0 ðx < 0Þ;
exp � x=ac½ � ðxP 0Þ:

�
ð32Þ

This relation may qualitatively explain the exponential-
like decrease of the weight in the streamwise direction.
4.4. Control law for pipe flow

The control law for a pipe flow can be developed

similarly by using the Taylor-series expansion of the
near-wall Reynolds shear stress, i.e.,

u0ru
0
zð1� Y Þ ¼ �Y/

ou0z
or

����
w

þ OðY 2Þ ð33Þ

and the solution of q for pipe flow (Xu et al., 2002), i.e.,

q̂ ¼ icqw

kzDt
2

ImðcrÞ
ImðcÞ

�
� ImðkzrÞ

ImðkzÞ

�
; ð34Þ

where

cqw ¼ � 2

Dt
ImðcÞ
Imþ1ðcÞ

�
þ ImðcÞ
Im�1ðcÞ

�
~̂/

�
kp ð35Þ

and

kp ¼ kz
Imþ1ðkzÞ
ImðkzÞ

ImðcÞ
Imþ1ðcÞ

�
þ Im�1ðkzÞ

ImðkzÞ
ImðcÞ
Im�1ðcÞ

� 2
kz
c

�
:

ð36Þ
Here, m is the azimuthal mode number and ImðrÞ denotes
the mth order modified Bessel function, i.e.,

ImðrÞ ¼ ð�iÞmJmðirÞ. The length is non-dimensionalized

by R�, and hence kh ¼ ð2pmÞ=ð2pRÞ ¼ m and

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ m2

p
. By this non-dimensionalization and by

using the similar assumption as that made for channel,

i.e., k2z ;m
2 � c2, the expression above is simplified as

compared to the original version of Xu et al. (2002).

Following the similar procedure as that for the
channel flow, we obtain the control input, which reads

/̂ ¼ a
1� iacjðm; kzÞ

couz
or

�����
w

: ð37Þ

The difference from the solution for channel flow is

absorbed into the factor, jðm; kzÞ. As can be imagined

from Eqs. (34)–(36), the exact expression of jðm; kzÞ is
highly complicated. However, under the condition of

jmj � c, the asymptotic expression for the modified

Bessel function, i.e.,

ImðcÞ ’
1ffiffiffiffiffiffiffiffi
2pc

p expðcÞ ð38Þ

simplifies the expression of jðm; kzÞ, as

jðm; kzÞ ¼
1

2c

��
þ 1

�
ImðkzÞ
I 0mðkzÞ

� 1

c

�
; ð39Þ

where I 0mðrÞ is the radial derivative of ImðrÞ. The

parameter c is usually much larger than unity. In that

case, Eq. (39) can be further simplified to result in

jðm; kzÞ ¼
ImðkzÞ
I 0mðkzÞ

: ð40Þ

The correlation between the wavenumber-dependent
parts, i.e., kx=k for channel and jðm; kzÞ for pipe, is
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shown in Fig. 6. The correlation is nearly linear for
higher wavenumbers. As can be imagined from the

geometrical difference, the largest deviation is observed

at the lowest azimuthal wavenumber (m ¼ 1).

The distribution of the weight in the physical space is

found to be nearly the same as that for the channel flow.
5. Performance test

Performance of the proposed control laws is assessed

by DNS of turbulent pipe flow. First, about 40 runs are

performed for the present suboptimal control with dif-

ferent values of the parameters a and c.
The DNS code is based on the energy conservative

finite difference method for the cylindrical coordinate

system (Fukagata and Kasagi, 2002). The time integra-
tion is done by using the low storage third-order Runge–

Kutta/Crank–Nicolson scheme (see, e.g., Spalart et al.,

1991). The bulk mean velocity Ub is kept constant, and

the Reynolds number is Reb ¼ 5300 (Res ’ 180 for

uncontrolled flow). The computational domain has a

longitudinal length of L ¼ 20R and the periodic

boundary conditions are applied at both ends. The

specification of the computational grid is summarized in
Table 1. The coarser grid system is used for the

parameter study, while the finer grid system is for

accumulation of detailed statistics. It has been verified in

the DNS of opposition controlled flows that even the

coarser grid system used here is sufficient to evaluate the

drag reduction rate (Fukagata and Kasagi, 2003).
Table 1

Number of grids ðNr;Nh;NzÞ and grid spacing ðDr;RDh;DzÞ
Nr Nh Nz

Finer grid 96 128 512

Coarser grid 48 128 256
Fig. 7 shows the time-averaged drag reduction rate,

RD, as a function of the resulting amplitude of control
input, /þu

rms, for different values of ac. Here, the super-

script of þu denotes the wall unit of the uncontrolled

flow. The drag reduction rate increases with the increase

of amplitude. Relatively large drag reduction rate was

obtained when 156 ac6 146 with the values of a that

result in 0:065 < /þu
rms < 0:085. This amplitude is com-

parable to that of the opposition control with the

detection plane height of yþu
d ’ 10. The efficiency of the

control is slightly better with smaller value of ac. For
instance, amplitude of /þu

rms ’ 0:063 is required to obtain

10% drag reduction with ac ¼ 15, whereas /þu
rms ’ 0:079

with ac ¼ 73. From the definition of a and c, this dete-
rioration for large value of ac is explained by that the

approximation of Reynolds stress above the wall by the

Taylor expansion becomes inaccurate for large Y , as

well as by that the control becomes cheaper.
In Fig. 7, drag reduction rates only of the successful

cases are plotted and the cases in which the drag in-

creased (and often the computation diverged) are ex-

cluded. For example, for ac ¼ 73 the drag was reduced

by 11.5% with /þu
rms ’ 0:08, but the drag increased at a

slightly stronger control due to instability in the near-

wall layer. In any cases examined with /þu
rms > 0:085, the

drag was not reduced. The instability for large ampli-
tude of control can be explained by the form of the

present control law. The first term in the right-hand side
Drþu ðRDhÞþu Dzþu

0.46–2.99 8.84 7.03

0.95–6.11 9.03 14.4
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of Eq. (27) is associated with the flow information, but

the second term is a function of the control input itself.

Therefore, for too large /, the control input is deter-

mined by itself regardless of the status of the flow. As

the result, the system becomes unstable. The simulations

are also performed by dynamically adjusting the
amplitude coefficient so that /rms becomes constant in

time. In those cases, the control amplitude can be in-

creased up to /þu
rms ’ 0:17. The drag reduction rate,

however, decreases for /þu
rms > 0:08 and the maximum

drag reduction rate is unchanged from the cases of the

constant amplitude coefficient described above.

Fig. 8 shows the joint probability density function

(PDF) of the streamwise and wall-normal velocity fluc-
tuations near the wall (yþu ’ 5) of the case computed on

the finer grid system, i.e., ac ¼ 36 and /þu
rms ’ 0:07. The

joint PDF exhibits a similar change to what we initially

expected (Fig. 3). The sweep and ejection are sup-

pressed, whereas the low-speed inward and high-speed

outward motions are enhanced by the present control.

The profile of the Reynolds shear stress of the cor-

responding case is shown in Fig. 9. Again, the near-wall
Reynolds stress is suppressed with the present control as
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Fig. 9. Reynolds shear stress.
we initially intended. As can be seen from the compar-

ison, the profile of the present control is nearly the same

as that of the opposition control (denoted as v-control)
with yþu

d ¼ 5. A small difference between them can be

noticed in the region of 0 < yþu < 5, where the sign of

the Reynolds shear stress is reversed with the present
control. In Fig. 9, comparison is also made with the

opposition control with yþd ¼ 15, in which the Reynolds

stress around 5 < yþu < 10 is mostly suppressed to re-

sult in a higher drag reduction rate (’25%). The direct

suppression with the present control seems to occur

merely in the region of 0 < yþu < 5. These comparisons

suggest a possibility of further drag reduction by mod-

ification of control law so that a largely negative Rey-
nolds shear stress is created in the near-wall layer or the

Reynolds shear stress farther from the wall is directly

suppressed.

Contours of the wall-shear stress fluctuation are de-

picted in Fig. 10. As is well known, a streaky structure of

wall-shear can be observed in the uncontrolled flow.

With the present control, the wall-shear fluctuation is

drastically reduced and it forms somewhat circular
structures. This change is slightly different from the re-

sults of most of the previous controls (e.g., Choi et al.,

1994; Lee et al., 1998; Endo et al., 2000; Lee et al., 2001)

in which elongation of streaky structure was observed.

This circular structure becomes more pronounced as the

increase of control amplitude, which seems to be related

to the above-mentioned instability for excessively large

values of /rms.
For the intuitive control scheme, Eq. (8) or c ! 0

limit of the present suboptimal control law, the com-

putation is very unstable and drag reduction is not

observed with any value of the parameter examined.

Such unstable behavior is illustrated in Fig. 11, in

which time trace of / of one sample actuator is plotted.

For comparison, similar time traces for the present

suboptimal control and two suboptimal control
schemes by Lee et al. (1998), i.e., the streamwise wall-

shear-based control, Eq. (2), and the spanwise wall-



Fig. 10. Contours of streamwise wall-shear stress fluctuation, �ðou0z=orÞw: (a) without control; (b) present control (ac ¼ 36) with /þu
rms ’ 0:063; and

(c) /þu
rms ’ 0:078. Increment is 0.1 wall unit and negative contours are dashed.
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shear-based control, /̂ ¼ iðkz=kÞðoŵ=oyÞw, are also

shown. In all cases, the magnitude of control input is

fixed at /þu
rms ¼ 0:08. It is clear that two schemes that
successfully reduce the drag (i.e., the present (�uv)-
based suboptimal control law and the (ow=oy)-based
suboptimal control law give almost constant control

input in this short period of time (1 wall unit time),

whereas those do not reduce the drag give oscillatory

control input. Note that the CFL number in the near-

wall region is less than 0.1 so that this instability is not

a purely numerical one. The instability is probably due

also to the coupling between the dynamics of the plant

(i.e., fluid flow) and the controller.
6. Summary and conclusions

Based on the knowledge on the componential con-

tribution to the skin friction (Fukagata et al., 2002),

an alternative cost functional for drag reduction,

which incorporates the near-wall Reynolds shear stress,
was proposed in the framework of the suboptimal

control.
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The control input to minimize that cost functional

was analytically obtained by using the method proposed

by Lee et al. (1998). Only the streamwise wall-shear

signal, which is the sole quantity usable in the physical
experiment at this moment, is required to determine the

control input. Different from any other explicit control

laws previously proposed, the weighting function has a

practically two-dimensional distribution, which is

asymmetric in the streamwise direction and symmetric

on the spanwise direction.

DNS of pipe flow at Res ’ 180 with the present

control law showed a clear drag reduction effect, which
could not be attained by the previous streamwise wall-

shear-based suboptimal control law (Lee et al., 1998).

As initially intended, the Reynolds shear stress in the

near-wall layer can be successfully suppressed. The

modification of the profile is basically similar to that by

the opposition control with a low detection plane height.

In addition, the sign of the Reynolds shear stress is re-

versed in the region of 0 < yþu < 5.
Although the drag reduction rate attained by the

present algorithm was small, the result suggests that

further drag reduction may be possible, if the structure

farther from the wall can be directly manipulated such

as in the opposition control, or if the Reynolds shear

stress in the near-wall layer can be made strongly neg-

ative. In order to realize these ideas, one has to over-

come the problem of instability, which is revealed to be
common to several unsuccessful control laws. The cause

for this instability presumably lurks in the coupling

between the plant and the controller. The details, how-

ever, should be further investigated.
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